Exploring rare genetic disorders: Insights into Moebius syndrome and Progeria syndrome

Sarita Singh, Manju Pandey*

Institute of Pharmacy of Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh -225003 Email: manju16824@gmail.com

Abstract

Rare diseases present significant challenges in healthcare due to their diverse symptoms, limited scientific understanding, and inadequate treatment options. Moebius Syndrome and Hutchinson-Gilford Progeria Syndrome (HGPS) are two such rare conditions that illustrate the complexities and impact of these disorders. Moebius Syndrome, characterized by facial and ocular nerve paralysis, poses challenges in diagnosis and management due to its genetic and environmental origins. Similarly, HGPS, a genetic disorder causing premature aging symptoms, underscores the urgent need for effective treatments. Despite their rarity, these diseases profoundly impact patients' quality of life, emphasizing the importance of heightened awareness, research collaboration and equitable access to healthcare. Additionally, involving affected individuals in clinical trials can improve research investigations and

Keywords: Rare disease, Moebius, Progeria, Genetic, Healthcare

1. Introduction

Over 7,000 known rare diseases affect approximately 400 million people worldwide. These conditions collectively represent one of the largest underserved patient communities globally. It's noteworthy that 80% of rare diseases are of genetic origin, with half of them affecting children, which emphasizes the profound impact on individuals and families. Despite their prevalence, medical expertise, knowledge, and care offerings for rare diseases remain scarce, resulting in delays in diagnosis, inadequate treatment options, and limited research efforts (1,2).

2. Moebius syndrome

Moebius syndrome is rare congenital disorder characterized by unilateral or bilateral non-progressive facial nerve paresis (Nerves VII) and impaired ocular abduction due to dysfunction of the abducens nerve (Nerves VI). German neurologist Paul Julius Moebius provided the first detailed clinical description in 1888, noting facial and abducens nerve paralysis, while Von Graefe initially reported facial muscle weakness. In addition, Moebius syndrome can also affect other cranial nerves, leading to orofacial, behavioral, cognitive, and orthopedic issues like conjoined fingers/ toes or brachydactyly (4-6). Manifestations encompass facial muscle weakness, speech challenges, dental issues, and hand anomalies (7-10). Figure 1 shows the facial changes before and after due to Mobius syndrome.

Figure 1. Facial changes due to Mobius syndrome in individuals (Source: https://samarpanphysioclinic.com/moebius-syndrome)

2.1 Role of genetics

Genetics plays a significant role in the etiology with reported genetic loci at 3q21-q22 and 10q. Mutations in genes such as REV3L, PLXND1, HOXA1, HOXB1, and TUBB3 have been associated with facial palsy in Moebius syndrome (11). While familial patterns exist in rare cases, they are mostly sporadic, suggesting a complex genetic basis. Additionally, factors like intrauterine infections, hyperthermia, trauma, and exposure to teratogens may also contribute to the development of disease (12).

2.2 Management/treatment

The management of Moebius syndrome requires a multidisciplinary approach involving healthcare professionals, neurologists, orthopedic surgeons, ophthalmologists, and speech therapists. Specialized feeding techniques and nutritional support may be necessary for infants experiencing sucking and feeding issues. Surgical interventions, such as facial reanimation surgery, can improve facial movements and symmetry, while ophthalmological assessment can prevent corneal ulceration and correct ocular abnormalities like strabismus and lagophthalmos (13, 14).

3. Hutchinson-Gilford progeria syndrome

Hutchinson-Gilford Progeria Syndrome is a genetic disorder characterized by symptoms of accelerated aging, affecting approximately 1 in 4-8 million children. It is caused by a mutation in the LMNA gene, leading to the production of a truncated protein called progerin, whose accumulation causes defects in nuclear envelope structure and function, resulting in premature aging, impaired DNA repair, increased ROS production, and mitochondrial dysfunction in HGPS cells. HGPS is not typically inherited; the genetic change usually occurs randomly, making it extremely rare. If a family has previously had a child with HGPS, the chance of having another affected child increases to about 2-3% due to mosaicism (15, 16). Figure 2 show the characteristics of the disease.

Figure 2. Disease the progression of Progeria from childhood till later age (Figure source: AI generated)

3.1 Role of genetics

Genetics plays a crucial role in Progeria syndrome, particularly in HGPS. The LMNA gene mutations, such as the de novo C1824T mutation, lead to the accumulation of progerin, a dominant negative form of lamin-A, causing premature aging. Genes like KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, and IGFBP2 play a role in both progeria syndrome and natural aging, indicating genetic involvement in progeria. This accumulation of progerin alters the organization of the nuclear lamina and chromatin, contributing to faster cellular senescence and the progeroid phenotype (17-19).

3.2 Management and treatment

Research on treating HGPS has mainly focused on genetic and pharmacological interventions 94.6% and 5.4% involve other approaches. Protein farnesyl transferase inhibitors (FTIs) have been extensively studied, comprising 22.5% of treatment. Lonafarnib, an FTI, has shown promise in improving bone structure, audiological status, and neurologic function in children with HGPS (20, 21). Nucleic acid therapy has emerged with over 40% of studies exploring this approach. Strategies include prenatal genetic manipulation, and antisense oligonucleotide therapy (22, 23). Table 1 show various treatment regimens of Progeria.

Table 1. Various treatment regimens for Progeria syndrome

Туре	Treatment regimen
Pharmacological treatment	The administration of both pravastatin and zoledronate in combination (24)
	Therapy involving rapamycin (25)
	Leptomycin B therapy (26)
	Therapy involving baricitinib(27)
	Treatment combining levamisole and ARL67156 (28)
	Administration of resveratrol (29)
	Therapy with temsirolimus (30)
	Use of metformin (31)
Protein therapy	Administration of recombinant IGF-1 (32)
Microbiota therapy	Fecal microbiota transplantation (33)
Nucleic acid therapy	Targeting methyltransferase Suv39h1 depletion (34)
	The genetic approach decreases the expression and activity of isoprenylcysteine carboxyl methyltransferase (ICMT)
	Genetic inhibition of DNA damage activity at telomeres

4. Conclusion

In conclusion, rare diseases like Moebius Syndrome and Hutchinson-Gilford Progeria Syndrome highlight the need for increased awareness, research collaboration, and equitable access to healthcare.

References

- 1. Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E, Hughes DA. Rare disease terminology and definitions a systematic global review: report of the ISPOR rare disease special interest group. Value in health. 2015 Sep 1;18(6):906-14.
- 2. Chu SY, Weng CY. Introduction to genetic/rare disease and the application of genetic counselling, 2017 Oct 1;64(5):11.
- 3. Stoller JK. The challenge of rare diseases. Chest. 2018 Jun 1;153(6):1309-14.
- 4. Picciolini O, Porro M, Cattaneo E, Castelletti S, Masera G, Mosca F, Bedeschi MF. Moebius syndrome: clinical features, diagnosis, management, and early intervention. Italian journal of pediatrics. 2016 Dec;42:1-7.
- 5. Singham J, Manktelow R, Zuker RM. Mobius syndrome. In Seminars in plastic surgery 2004 Feb 18(01)39-45.
- 6.SOGG RL. Congenital facial diplegia syndrome of Mobius: A case report. Archives of Ophthalmology, 1961 Jan 1;65(1):16-9.
- 7. Verner A, Agarwal-Sinha S, Han FY. Mobius syndrome with cardiac rhabdomyoma. Ophthalmic Genetics. 2018 May 4;39(3):373-6.

 8. Stromland K, Sjogreen L, Miller M, Gillberg C, Wentz E, Johansson M, Nylen O, Danielsson A, Jacobsson C, Andersson J, Fernell E. Mobius sequence a Swedish multidiscipline study. European Journal of Paediatric Neurology. 2002 Jan 1;6(1):35-45.

 9. Bavinck JN, Weaver DD, Opitz JM, Reynolds JF. Subclavian artery supply disruption sequence: Hypothesis of a vascular etiology
- for Poland, American Journal of Medical Genetics. 1986 Apr;23(4):903-18
- 10. Miller MT, Ventura L, Stromland K. Thalidomide and misoprostol: ophthalmologic manifestations and associations both expected
- and unexpected. Birth Defects Research Part A: Clinical and Molecular Teratology. 2009 Aug;85(8):667-76.

 11. Tomas-Roca L, Tsaalbi Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, Verzijl H, Soria L, Van Beusekom E, Roscioli T, Iqbal Z. De novo mutations in PLXND1 and REV3L cause Mobius syndrome. Nature communications. 2015 Jun 12;6(1):7199.
- 12. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC, Nester MJ, Oystreck DT, Chan WM, Andrews C, Erickson RP, Engle EC. Homozygous HOXA1 mutations disrupt the human brainstem, inner ear, cardiovascular and cognitive development. Nature genetics. 2005 Oct 1;37(10):1035-7.
- 13. McKay VH, Touil LL, Jenkins D, Fattah AY. Managing the child with a diagnosis of Moebius syndrome: more than meets the eye. Archives of disease in childhood. 2016 Sep 1;101(9):843-6..

 14. Webb BD, McCarrell V. An overview of Moebius syndrome: Diagnosis, supportive treatment, and valuable community resources.

- NeuroReviews, Special Report. 2019;3.

 15. Bonne G. Laminopathies: Why make it simple when it can be complex? Neuromuscular Disorders. 2016 Oct 1;26:S150-1.

 16. Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G. Laminopathies and lamin-associated signaling pathways. Journal of cellular biochemistry. 2011 Apr;112(4):979-92.
- 17. Chandra D, Rawat SS, Nijhawan R. A machine learning-based approach for progeria syndrome detection. In 2019 4th International Conference on information systems and computer networks (ISCON) 2019 Nov 21 (pp. 74-78). IEEE.
- 18. Caliskan A, Crouch SA, Giddins S, Dandekar T, Dangwal S. Progeria and aging—Omics based comparative analysis. Biomedicines. 2022 Sep 29;10(10):2440.
- 19. Caliskan A, Crouch SA, Giddins S, Dandekar T, Dangwal S. Progeria and aging—Omics based comparative analysis. Biomedicines. 2022 Sep 29;10(10):2440.
- 20. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006 Mar 17;311(5767):1621-3.
 21. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B. Clinical trial of a FTI in children with HGPS, Proceedings of the National Academy of Sciences. 2012 Oct 9;109(41):16666-71
- 22. Ullrich NJ, Kieran MW, Miller DT, Gordon LB, Cho YJ, Silvera VM, Giobbie-Hurder A, Neuberg D, Kleinman ME. Neurologic features of HGPS after lonafarnib treatment. Neurology. 2013 Jul 30;81(5):427-30.
- 23. Gordon LB, Shappell H, Massaro J, D'Agostino RB, Brazier J, Campbell SE, Kleinman ME, Kieran MW. Association of lonafarnib treatment vs no treatment with the mortality rate in patients with HGPS. Jama. 2018 Apr 24;319(16):1687-95.
- 24. Wang Y, Östlund C, Worman H. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelaminA variant in HGPs. Nucleus. 2010 Sep 1;1(5):432-9.

 25. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS. Rapamycin reverses cellular phenotypes and
- enhances mutant protein clearance in HGPS cells. Science translational medicine. 2011 Jun 29;3(89):89ra58-.

 26. García-Aguirre I, Alamillo Iniesta A, Rodriguez Perez R, Velez Aguilera G, Amaro Encarnacion E, Jimenez Gutierrez E, Vasquez
- Limeta A, Samuel Laredo-Cisneros M, Morales Lazaro SL, Tiburcio Felix R, Ortega A. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. Aging Cell. 2019 Oct;18(5):e13002.
- 27. Liu C, Arnold R, Henriques G, Djabali K. Inhibition of JAK-STAT signaling with baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells. 2019 Oct 18;8(10):1276.
- 28. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin Perez R, Enriquez JA, Lopez Otin C, Andres V. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of HGPS that is ameliorated on pyrophosphate treatment. Circulation. 2013 Jun 18;127(24):2442-51.
- 29. Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M. Resveratrol rescues SIRT1 dependent adult stem cell decline and alleviates progeroid features in laminopathy based progeria. Cell metabolism. 2012 Dec 5;16(6):738-50.
- 30 Gabriel D, Gordon LB, Djabali K. Temsirolimus partially rescues the Hutchinson Gilford progeria cellular phenotype. PloS one.
- 2016 Dec 29;11(12):e0168988. 31. Egesipe AL, Blondel S, Lo Cicero A, Jaskowiak AL, Navarro C, Sandre Giovannoli AD, Levy N, Peschanski M, Nissan X. Metformin decreases progerin expression and alleviates pathological defects of HGPS cells. NPJ aging and mechanisms of disease.
- 32. Marioo G, Ugalde AP, Fernandez AF, Osorio FG, Fueyo A, Freije JM, Lopez Otin C. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proceedings of the National Academy of Sciences. 2010 Sep 14;107(37):16268-73.
- 33. Barcena C, Valdas-Mas R, Mayoral P, Garabaya C, Durand S, Rodriguez F, Fernandez-Garcia MT, Salazar N, Nogacka AM, Garatachea N, Bossut N. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature
- medicine. 2019 Aug;25(8):1234-42.

 34. Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nature communications. 2013 May 21;4(1):1868.