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Abstract
In silico clinical trials provide an effective solution to the obstacles encountered in carrying out in
vivo clinical trials. They have the potential to transform the approach of investigating and
developing treatments for rare conditions, thereby enhancing the quality of life for individuals
worldwide. To enhance existing treatment approaches, the utilization of mechanistic and data-
driven modelling proves to be beneficial. These tools allow for the simulation and analysis of data
obtained from in vivo clinical trials, as well as the categorization of subject populations. This
technique has the capacity to completely transform the future of drug discovery, particularly for
rare paediatric diseases.

1. Introduction
In medical research, the term “in silico” refers to conducting experiments on a software via
computer simulation. This innovative approach is rapidly gaining attraction in the field of drug
development, and it is also being explored for paediatric orphan diseases. Orphan diseases are
conditions with low prevalence, the World Health Organisation (WHO) defines this as fewer than
6.5 to 10 patients per 10,000 (1). Approximately >7000 uncommon illnesses impact 25 to 30
million individuals, with roughly 4000 orphan diseases, and around 5000 patients for each
orphan disease require medical attention in the United States (2). Rare disease prevalence is
estimated to range from 5 to 76 per 100,000 people in non-North American and European
countries. This conservative estimate puts the total number of affected individuals worldwide to
about 446.2 million. There are currently 230 rare diseases being researched in the Rare Diseases
Clinical Research Network (RDCRN) (3). Approximately 80% of these uncommon illnesses have a
known genetic cause that involves one/more genes or chromosomal abnormalities. The rest are
due to degenerative, proliferative, or teratogenic causes, allergies, or infections (bacterial or
viral) (4). There were just 34 therapies available for uncommon illnesses before 1983 (2,3). As of
2021, more than 600 therapies had been approved as a result of government incentives over the
previous 40 years. Despite the progress recorded, only a small percentage of patients can be
treated with an approved medications. As such, between 2010 and 2015, one-third of all new
drug approvals for rare diseases were granted (3). Traditional clinical trials for these diseases
face significant challenges, including limited patient populations, ethical concerns, and high
costs. In silico clinical trials offer a promising solution to these challenges, revolutionizing the
way we study and develop treatments for paediatric orphan diseases.
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2. Understanding the challenges
Paediatric orphan diseases present unique challenges that hinder traditional clinical trial
methods. Even though public awareness has increased over the past three decades, research on
rare diseases faces obstacles that include scarcity of qualified disease experts, the difficulty of
securing funding for research due to limited economic impact, patient distribution across
geographic regions that hinder patient recruitment for clinical trials, the requirement for
 specialised study designs to address the small patient cohorts, and high patient variability
throughout the course of rare diseases. The rarity of these diseases makes it difficult to recruit a
sufficient number of patients for meaningful clinical trials. Furthermore, because children
account for 50% of patients with rare diseases, so because of ethical concerns clinical research
becomes more difficult (1). It is challenging to conduct conventional randomized clinical trials
(RCTs) in parallel groups due to the small patient numbers dispersed over a large geographic
area. Both the inclusion of particular populations and therapies that are customized for each
patient are necessary. Unfortunately, there is little to no evidence supporting the clinical trial
results that are most frequently published for rare diseases. It is inappropriate to use
"before/after" methodology studies without a control group or historical comparisons when
evaluating drugs because these studies could be potentially biased (4). Moreover, the high costs
associated with traditional trials make it financially challenging for pharmaceutical companies to
invest in developing treatments for these diseases.

3. The role of in silico virtual clinical trials
To overcome the problems associated with a small population available for conventional clinical
trials, the use of in silico computational models and simulations is proposed. The essential
elements and biological mechanisms are first expressed in a conceptual model for in silico
clinical trials, after which they are converted into a mathematical format (1). The limitation of
small patient cohorts in rare diseases can be overcome by creating hundreds of different
parameter sets in silico, allowing for the establishment of a large cohort of virtual subjects.
Additionally, the in silico model is used to create a distinct paired data set of both treated and
untreated virtual subjects, avoiding the difficulties that come with paediatric RCTs (4). These
trials can simulate the biological processes of a disease, the effects of a drug on the body, and
the likelihood of success in a virtual population (Figure 1). By leveraging data from various
sources, including genomics, proteomics, and clinical studies, researchers can create
sophisticated models that accurately represent the complexities of paediatric orphan diseases.

Figure 1. Essential components for modelling and simulation approach
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Dataset Use Reference

FDA Orphan Drug Designations
and Approvals

Drugs associated with rare diseases
www.accessdata.fda.gov/scripts/opdl
isting/oopd/

MalaCards The human disease database www.malacards.org/

Pharos Targets associated with diseases
https://pharos.nih.gov/

ClinVar
Gene variations and associated
conditions

www.ncbi.nlm.nih.gov/clinvar/

OMIM
Association between human genes
and genetic disorders https://omim.org/

GeneCards Genes information www.genecards.org

NORD Signs and symptoms of rare diseases
https://rarediseases.org/ 

Rare Disease InfoHub
Symptoms of rare diseases
(including experts and funding
opportunities)

https://rarediseases.oscar.ncsu.edu/

Genetic and Rare Diseases
Information Center

Synonyms, summary, and symptoms
for rare diseases https://rarediseases.info. nih.gov/

3.1 Collection of databases

The first step to prepare any computational clinical trial model is to gather comprehensive
information about a particular disease from already established clinical databases. Patient
registries from a geographically defined population over an extended period, provide the highest
level of evidence for epidemiological studies. These databases aim to provide data on every facet
of a specific rare disease, organized into multiple primary categories (Table 1) (4). The FDA
database includes 1055 medications list and provides information on the indications related to
orphan drug and chemical structures (3). 

Table 1. Data sources for rare diseases (3)
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3.2  Analysis of databases 

3.2.1 Prognostic biomarkers 
A biomarker is considered prognostic when its values at the beginning or its changes over
time are linked to a clinical outcome that is unrelated to the treatment. Prognostic
biomarkers are linked with a specific favourable or unfavourable evolution of the disease.
Its correlation with the clinical endpoint needs to be consistently shown in separate
investigations, ideally spanning a variety of clinical scenarios, for it to be considered
validated. Contrary to popular opinion, heterogeneity is typically more advantageous from
a statistical standpoint than disadvantageous. Prognostic biomarkers may only need to be
initially identified and statistically validated through retrospective studies; however,
prospective studies may be required to confirm the clinical utility of the biomarker (4). 

3.2.2 Predictive biomarkers
A biomarker is considered predictive when it is shown that its initial value or subsequent
changes can accurately predict the effectiveness or harmful effects of a treatment, as
judged by a certain clinical outcome. RCT data involving patients with high and low
biomarker levels is necessary for the statistical identification of predictive markers. To find
potential predictive biomarkers and validate them sufficiently for inclusion in clinical
practice and trial designs, retrospective analyses might be adequate. However, for
conclusive evidence, prospective clinical trials might still be required (4).

3.2.3 Analysis of potential treatments 
Various methodologies have been proposed to assess the impacts of interventions in
observational studies. The primary goal of all these techniques is to address confounding,
or potential bias brought on by the nonrandomized treatment assignment (5). The most
popular techniques are:

Observational study designs: Case-crossover, Case time-control, Historical controls,
Treatment candidates, Comparisons of treatments for the same indication

i.

Data-analytical techniques: Asymmetric stratification, Propensity score adjustment,
Two-stage least squares, Common multivariable statistical techniques, Instrumental
variables, Simultaneous equations, Stratification and matching on specific covariates

ii.

3.3 Disease/drug effect modelling
Several models of diseases have been published in the literature thus far. Their
mathematical formulation relies on partial differential equations (PDEs) and/or ordinary
differential equations (ODEs), which serve as the foundation for these models. These
models are often used to simulate the progression of biomarkers during the course of
disease development. Pharmacokinetic-pharmacodynamic relationships serve as the
foundation for treatment effect modelling most of the time, and models on this subject are
already available. These models are particularly helpful in anticipating biomarker changes
following a modification in the dosage of a treatment (5).

4. Strategy for simulation
Conducting simulated clinical trials of a drug in virtual populations allows for direct
observation of the treatment's effect impact on the diseased population. Any simulation
model for a given therapeutic technique is categorized into one of these sub-models (6):

Patient outcomes are predicted by the input-output (IO) sub-model. It includes the
pharmacokinetic/pharmacaodynamic (PK/PD) characteristics of the medicine, as well as
a pathophysiology model of the condition, if exists. In order to accurately replicate drug
concentrations, biomarkers of therapeutic or toxicological response, or the occurrence
of a clinical outcome or adverse event, it is necessary to determine the parameters and
structure of the model using the data obtained from clinical research.
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Using already-existing patient databases, the covariate distribution sub-model explains
patient features.

The execution sub-model describes the features of experimental designs and deviations from
protocol that are related to patients or researchers.

Assessment of simulation results: Assessment is carried out in the same population following
drug or placebo exposure. This method allows for the exploration of a wide range of scenarios
pertaining to RCT designs, drug dosages, drug associations, patient selection, exposure duration,
etc. The following are the primary steps:

Patient samples for in silico RCTs that are chosen at random from the "validated" virtual
population. 

1.

Optimizing and limiting the number of simulations by using a pre-established simulation
strategy.

2.

Applying the same particular statistical analysis to every set of simulated RCT outcomes.3.
 
Analysis of simulation results: The final analysis should identify the most relevant medications
(using multiple-criteria decision analysis techniques) and experimental designs for phase III RCT
evaluation. 
The majority of this analysis would be descriptive. The number of times a significant result is
produced in each trial should be used to rank each scenario, including trial design and "rare
disease-drug" pairs. Trial length and the accuracy of treatment effect estimates are considered
in this final hierarchy (6).

5. Case study (1)
Mutations in Neurofibromatosis Type 1 (NF1) are linked to congenital pseudoarthrosis of the tibia
(CPT). A gradual bending of the tibia that leads to spontaneous fractures in the distal portion of
the tibia is the hallmark of the unusual condition known as CPT. Pseudoarthrosis is usually
caused by insufficient bone regeneration and is treated with either internal or external fixation
or by physically excising the abnormal bone tissue. Recombinant human bone morphogenetic
protein, or rhBMP-2 or rhBMP-7, is used in clinical practice these days to improve surgical
outcome. Nonetheless, there is ongoing controversy regarding the efficacy of BMP therapies,
and the United States Food and Drug Administration (U.S. FDA) has cautioned against using BMP
in patients who are skeletally immature. Researchers concentrated on the eight parameters that
were identified in the literature as having a part in the inadequate fracture-healing outcome in
CPT. In order to investigate the impact of the NF1 mutation on bone-fracture repair, the
parameter values of the variables representing the abnormal cellular activity of NF1-
haplodeficient and NF1-null cells were varied throughout a wide range in the computational
model.

Following is the list of selected eight parameters (normal and NFI range respectively): 

Invasion time fibroblasts (3, 0-50) 
Fibroblastic proliferation (0.1, 0.1-10)
Fibroblastic differentiation (0.01, 0.01-1) 
Osteogenic differentiation (20, 0-20)
Endochondral ossification (1000, 0-1000)
Cartilage formation (0.2, 0-0.2)
Fibrous tissue formation (0.2, 0.2-10)
Angiogenic growth factor production (10, 10 - 10 )

3 3 5
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Method: The in silico clinical trial comprised of 200 virtual individuals, where the healing process was
simulated both with and without BMP treatment. The JMP "Design of Experiments" (DOE) tool was
used to create the 200 virtual subjects. By primarily modifying the parameter values of the eight
components in one direction relative to the normal case, the parameter space was identified, biasing
the DOE design toward a CPT phenotype. One generic osteochondrogenic growth factor (gbc) was
used to model BMP treatment. This model allows for the simulation of the effects of multiple growth
factors that are released from the BMP sponge as a clinical treatment and are present in the fracture
callus. 

Observation: The complication index (CI) mathematically analyses the degree of severity of CPT by
integrating the three most prevalent symptoms a non-union, haematoma, and presence of fibroblasts
in a linear form. When a combination of criteria results in decreased CI value, it suggests a low level of
CPT severity, implying that the fracture healing process is progressing reasonably smoothly. On the
other hand, a combination of criteria that generates a high confidence interval (CI) implies
considerably reduced fracture healing and is similar to the CPT phenotype.

Results: Using an arbitrary cut-off of CI value of 0.5, four distinct groups were clustered comprising
the virtual subjects: 

Adverse responders (having a high CI when treated, but a low CI when left untreated)1.
Non-responders, both with and without treatment (high CI)2.
Asymptomatic (low CI, both with and without treatment) 3.
Responders (lower CI after treatment and higher CI when left untreated)4.

In order to identify highly correlated (redundant) attributes, researchers first computed the Spearman
correlation matrix of the dataset, the outcomes indicated the lack of association between the NF1
parameters. The correlation between the CI value and the bone tissue fraction was as anticipated to
be negative and positive with the fibrous tissue fraction. To conduct a more thorough analysis of the
CI data, they examined the various elements that make up the CI value, such as the quantity of fibrous
tissue remaining after 49 days. There was a fascinating difference in the amount of fibrous tissue for
each subject class at day 49 post-treatment, with the responding subjects having substantially less
fibrous tissue than the other subject classes. Every virtual patient was made to experience both no
treatment and a treatment with bone morphogenetic protein (BMP). It was demonstrated that,
although very subject-specific, BMP treatment significantly reduces the degree of severity of CPT (1).

6. Regulatory requirement for in silico models
The regulatory authorities around the world share the need for regulatory guidance for in silico model
validation. When the modelling and simulation data are merely regarded to have a descriptive role and
the crucial information for the question being answered comes from other sources, the regulatory
impact is deemed to be minimal. Nonetheless, the regulatory impact is judged to be substantial when
modelling results serve as the primary source of evidence to address the important question by
substituting data normally generated in a clinical trial (7). Two global regulatory bodies that embrace
and promote the use of modelling and simulation in the regulatory process are the European
Medicines Agency (EMA) and the U.S. Food and Drug Administration. Further efforts are needed from
other regulatory bodies across the globe to integrate this new evidence into the regulatory framework
(8). 

7. Conclusion
In silico clinical trials hold immense promise for the future of drug development, particularly for
paediatric orphan diseases. Today, researchers can successfully conduct an in silico clinical trial, and
analyse the outputs. The next logical step would be to compare the simulated cohort with the real
patient-specific parameter distributions. As computational models become more sophisticated and
data sources become more abundant, the accuracy and reliability of in silico trials will continue to
improve. This approach has the potential to revolutionize the way we develop treatments for rare
diseases. To improve current treatment strategies, mechanistic and data-driven modelling are helpful
tools for simulating and mining data from in silico clinical trials and stratifying subject populations. 
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This kind of robust modelling can also be used to identify biomarkers, optimize dosage, or
determine how long to propose an intervention. Validating in silico clinical trials for rare diseases
and identifying any flaws in the computational model in the event of differences between the
predicted and measured in vivo outcomes would be made possible by real patients participating
in in vivo experiments.
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